Die Elektronenstruktur der Ethen–Nickel π-Komplexe

The Electronic Structure of Ethylene Nickel π -Complexes

Horst Bögel

Sektion Chemie, Technische Hochschule "Carl Schorlemmer" DDR-42 Merseburg, German Democratic Republic

Nickel(0)-olefine π -complexes such as Ni(C₂H₄)₃ and Ni(C₂H₄)(PR₃)₂ [6] prepared by conventional ligand replacement reaction are diamagnetic and stable up to room temperature. Similar π -complexes e.g. Ni(C₂H₄)_n (with n = 1, 2 or 3) generated by cryo-condensation technique [3] may exist in a paramagnetic state which derives from the triplet ground state of the atomic nickel. The stability of (η^2 -ethylene) nickel has been explained by *ab initio*-MO calculations relating the energies of the complexes to different terms (¹S and ³F) of the nickel atom.

Key words: Ab initio-MO - transition metal compound - ethylene.

In katalytischen Reaktionen ungesättigter Kohlenwasserstoffe werden häufig deren π -koordinierte Übergangsmetallkomplexe als reaktive Zwischenverbindungen formuliert [1]. Neben experimentellen Untersuchungen an stabilen Verbindungen eröffnete in neuerer Zeit die Tieftemperatur-Matrixisolationstechnik [2] neue Möglichkeiten zur Synthese und Charakterisierung von Olefin-Komplexen [3]. In steigendem Maße werden quantenchemische Berechnungen zum Studium von Struktur und Stabilität organometallischer Verbindungen eingesetzt [4, 5].

Da die bekannten π -Komplexe, wie Tris $(\eta^2$ -ethen)nickel [6], Mono- $(\eta^2$ -ethen)bis(phosphin)nickel [7] u.ä. diamagnetisch sind, wählten wir zur MOtheoretischen Beschreibung der Olefin-Übergangsmetall-Bindung das Mono $(\eta^2$ -ethen)nickel(0) im Singulett-Zustand als Modell für die folgenden Berechnungen. Denn bei der konventionellen Darstellung dieser π -Komplexe aus anderen diamagnetischen Komplexverbindungen bleibt offensichtlich eine closed-shell-Konfiguration des Nickel-Atoms erhalten. In den von Wilke formulierten Reaktionen des "nackten" Nickels liegt es nicht im Grundzustand, dem paramagnetischen ³F-Term vor. Für den angenommenen Fall einer d^{10} -Konfiguration wären folgende Terme an der Bildung des Mono(η^2 ethen)nickel(0) in der Symmetrie-Punktgruppe C_{2v} beteiligt.

$${}^{1}S(\text{Ni}, d^{10}) + {}^{1}A_{1g}(\text{C}_{2}\text{H}_{4}) \rightarrow {}^{1}A_{1}\left(\begin{array}{c} \text{Ni} \cdots \mid \\ \text{CH}_{2} \end{array} \right)$$

Zur Ermittlung der Potentialkurve dieser koordinativen Bindung wurden closed shell Berechnungen [8] unter Benutzung kartesischer Gauss-Typ-Funktionen ausgeführt. Dazu wurde der Standard-Basis-Satz des Ni [9] durch je eine diffuse p-Funktion ($\zeta = 0.3$) und d-Funktion ($\zeta = 0.1481$ [10]) zu einem (15s7p5d)-Basis-Satz modifiziert [11] und zu (5/4/2) kontrahiert. Für die Atome C (7s3p) [12] und H (4s) (mit $\zeta = 1, 2$) wurden Standard-Funktionen verwendet, die zu C(4/2) und H(2) kontrahiert eine nahezu "double-zeta"-Qualität für die MO-Berechnungen ergaben. Ethen wurde mit $R_{C=C} = 133$ pm, $R_{C-H} = 110$ pm und $\measuredangle_{CCH} =$ 120° in planarer Struktur fixiert. Abbildung 1 zeigt die Stabilisierung des π -Komplexes gegenüber der Energie der getrennten Systeme. Es sind dies Ethen (E = -77.9448 a.u.) und Ni(d^{10}) (E = -1503.7515 a.u.), wobei die d^{10} -Konfiguration nicht durch die Besetzung der irreduziblen Darstellungen vorherbestimmt war, sondern Resultat der SCF-Rechnung ist.

Bei nachfolgender Variation der C=C-Bindungslänge (Abb. 2) für einen Abstand des Nickels von $R_{\text{Ni}} = 190 \text{ pm}$ wurde eine teiloptimierte Struktur mit $R_{\text{Ni}-\text{C}} = 202 \text{ pm}$ und $R_{\text{C}=\text{C}} = 138 \text{ pm}$ erhalten, die den allgemeinen Strukturdaten von Ethen-Nickel(0)-Verbindungen [13] entspricht. Auch die berechnete Stabilisierungsenergie $E^{\text{Stab}} = 0.0301 \text{ a.u.}$ (ca. 80 kJ mol⁻¹) liegt im für Metall(0)-Komplexe zu erwartenden Bereich.

Eine Analyse der koordinativen Bindung im Sinne des Dewar-Chatt-Duncanson-Modells [14, 15] ergab eine leichte Bevorzugung der π -Backdonation- gegenüber der σ -Donation-Bindungskomponente, wie die Änderungen der

Fig. 1. Stabilisierungsenergie von $(\eta^2 -$ Ethen)nickel(0) bezüglich der Komponenten Ethen und Ni (d^{10})

Fig. 3. Population von bindendem (N_{π}) und antibindendem (N_{π^*}) MO im Ethen-Liganden des $(\eta^2$ -Ethen)nickel(0) in Abhängigkeit vom Nickel-Abstand

Populationen (Abb. 3) von bindendem (N_{π}) und antibindendem (N_{π^*}) MO im Ethen-Liganden zeigen. In der teiloptimierten Ethen-Ni-Struktur liegen die Populationen $N_{\pi} = 1.860$ und $N_{\pi^*} = 0.369$, sowie eine Ladung des Nickels von $Q_{\text{Ni}} = +0.284$ vor.

Da die Terme der d^9s^1 -als auch einige der d^8s^2 -Konfiguration energetisch günstiger als die d^{10} -Konfiguration des freien Nickelatoms liegen, kann angenommen werden, daß bei den Tieftemperatur-Cokondensations-Experimenten [3] die Nickelatome im Grundterm (³F) ein paramagnetisches $(\eta^2$ -Ethen)nickel(0) nach folgendem Schema bilden:

$${}^{3}F(\operatorname{Ni}, d^{8}s^{2}) + {}^{1}A_{1g}(\operatorname{C}_{2}\operatorname{H}_{4}) \rightarrow {}^{3}L\left(\operatorname{Ni} \cdots \underset{\operatorname{CH}_{2}}{\overset{\operatorname{CH}_{2}}{\underset{CH}_{2}}{\underset{\operatorname{CH}_{2}}{\underset$$

Wobei L eine irreduzible Darstellung der Gruppe C_{2v} ist. In der Tabelle 1 sind die Termenergien des Nickelatoms für die oben angeführten Basisorbitale dargestellt, die mit Hilfe des Programms ATOMSCF [16] berechnet wurden. Bei der Koordination spalten die zur Kugelgruppe gehörenden Nickel-Terme in die aufgelisteten Terme der C_{2v} -Gruppe unter Erhalt ihrer Spin-Multiplizität auf. Durch MO-Berechnungen auf Mehr-Determinanten-Basis, wie MCSCF oder SCF-CI-Methoden, ist es möglich, die aus den Termen der d^8s^2 - und d^9s^1 -Konfigurationen (Tab. 1) erwachsenden 15 Triplett- und 21 Singulett-Potential-kurven der Ethen-Nickel-Bindung zu berechnen.

Zu dieser Problematik sind bisher folgende Berechnungen bekannt. Mittels GVB-CI-Methode wurde eine Stabilisierung des Ethen-Nickels von 59 kJ mol⁻¹

Konfiguration	Term	(E+1503) a.u.	Terme in C_{2v}
d ⁸ s ²	³ F	-0.9092	${}^{3}A_{1}+2{}^{3}B_{1}+2{}^{3}B_{2}+2{}^{3}A_{2}$
	^{1}D	-0.8374	$2^{1}A_{1} + {}^{1}B_{1} + {}^{1}B_{2} + {}^{1}A_{2}$
	³ P	-0.8220	${}^{3}B_{1}+{}^{3}B_{2}+{}^{3}A_{2}$
	^{1}G	-0.7968	$3^{1}A_{1}+2^{\overline{1}}B_{1}+2^{\overline{1}}B_{2}+2^{1}A_{2}$
	^{1}S	-0.6327	${}^{1}A_{1}$
d^9s^1	³ D	-0.8926	$2^{3}A_{1} + {}^{3}B_{1} + {}^{3}B_{2} + {}^{3}A_{2}$
	${}^{1}D$	-0.8779	$2^{1}A_{1} + {}^{1}B_{1} + {}^{1}B_{2} + {}^{1}A_{2}$
d^{10}	^{1}S	-0.7515	${}^{1}A_{1}$

Tab. 1. Berechnete Term-Energien des Nickels

für die d^9s^1 -Konfiguration berechnet [5]. Basch [17] berechnete unter Verwendung effektiver Core-Potentiale mittels SCF-CI-Verfahren eine 3A_1 -Potentialkurve mit einem Minimum bei $R_{\rm Ni} = 220$ pm für eine vorausgesetzte Struktur des Ethens ($R_{\rm C=C} = 136$ pm und die H-Atome 20° nach außen gewinkelt). Bei größeren Abständen weist diese Kurve allerdings eine erhebliche Unstetigkeit auf, die auf den Konfigurationswechsel zwischen d^8s^2 und d^9s^1 zurückgeführt wird. Gegenüber dem 3D -Term ergibt sich eine Komplexstabilisierung von 0.01873 a.u. (49 kJ mol⁻¹); bezüglich des Grundterms 3F sind es jedoch nur 0.00485 a.u. (13 kJ mol⁻¹). In dieser niedrigen Stabilisierung von Ethen-Nickel im Triplett-Zustand bezüglich des Grundterms des atomaren Nickels sehen wir die Ursache des leichteren thermischen Zerfalls der paramagnetischen Kryo-Cokondensations-Verbindungen (T^{decomp} Ni(C₂H₄) 35°K bzw. Ni(C₂H₄)₃ 80°K [3]) gegenüber dem relativ stabilen Wilke' schen Ni(C₂H₄)₃ (T^{decomp} 273°K [6]).

Weitere klärende MO-Berechnungen sind nötig. Dabei ist zu beachten, daß auf SCF-Niveau open shell-Konfigurationen im UHF-Formalismus insbesondere bei kleinen Basis-Sätzen eine Bevorzugung gegenüber entsprechenden closed shell-Konfigurationen erfahren.

Mein Dank gebührt Herrn Professor Golebiewski (Krakow), der mir die vorliegenden *ab initio*-MO-SCF-Berechnungen ermöglichte, sowie den Herren Professoren R. Taube und G. Rasch (Merseburg) für ihr förderndes Interesse an den vorgestellten Problemen.

Literatur

- 1. Heck, R. F.: Organotransition metal chemistry, a mechanistic approach. New York: Academic Press 1974
- 2. Power, W. J., Ozin, G. A.: Adv. Inorg. Chem. Radiochem. 23, 79 (1980)
- 3. Ozin, G. A., Power, W. J.: Inorg. Chem. 17, 2836 (1978)
- Schaefer III, H. F.: THEOCHEM. 1, 117 (1981); Pitzer, R. M., Schaefer, H. F.: J. Am. Chem. Soc. 101, 7176 (1979)
- 5. Upton, T. H., Goddard, W. A.: J. Am. Chem. Soc. 100, 321 (1978)
- 6. Fischer, K., Jonas, K., Wilke, G.: Angew. Chem. 85, 620 (1973)
- 7. Herberhold, M.: Metal *m*-complexes, Vol. II, Amsterdam: Elsevier Publ. Comp. 1972

- 8. Almlöf, J.: The MOLECULE computer program. Stockholm 1974
- 9. Roos, B., Veillard, A., Vinot, G.: Theoret. Chim. Acta (Berl.), 20, 1 (1971)
- 10. Hay, P. J.: J. Chem. Phys. 66, 4377 (1977)
- Akermark, B., Almemark, M., Almlöf, J., Bäckvall, J. E., Roos, B., Stogard, A.: J. Am. Chem. Soc. 99, 4617 (1977)
- 12. Roos, B., Siegbahn, P.: Theoret. Chim. Acta (Berl.), 17, 203 (1970)
- 13. Ittel, S. D., Ibers, J. A.: Adv. Organomet. Chem. 14, 33 (1976)
- 14. Dewar, M. J. S.: Bull. Soc. Chim. Fr. 18, C 79 (1951)
- 15. Chatt, J., Duncanson, L.: J. Chem. Soc. 2939 (1953)
- Roos, B., Salez, C., Veillard, A., Clementi, E.: A general program for calculation of atomic SCF orbitals by the expansion method. IBM Research Report 1968
- 17. Basch, H., Newton, M. D., Moskowitz, J. W.: J. Chem. Phys. 69, 584 (1978)

Eingang 3, Februar 1983